Cybersecurity for Energy Delivery Systems 2010 Peer Review

Alexandria, **VA** ♦ **July** 20-22, 2010

Mark Hadley
Pacific Northwest National Laboratory
Cryptographic Trust Management

Summary Slide: Cryptographic Trust Management

- Outcomes: Scalable, efficient, and automated cryptographic trust management solution for control systems.
- Roadmap Challenge: Security upgrades hard to retrofit to legacy systems, may be costly, and may degrade system performance; complexity increases exponentially with an increase in number of nodes.
- Major Successes: Requirements and high-level design specifications completed. Protocol paper accepted for publication.

Schedule: Requirements
 Document, High-Level Design
 Specification

• Level of Effort: \$183K

• Funds Remaining: \$55K

• Performers: PNNL

Partners: Industry Advisors

Approach

- Centralize cryptographic material generation
- Centralize audit enforcement
- Secure storage and backup of cryptographic material
- Automate key management

Approach (Cont.)

- Centralize authentication and access control
- Increase assurance of third party access
- Decentralize operation

Metrics for Success

- Requirements document
- High-level design specification
- Conference publication

Challenges to Success

- Scalability
 - Automate key management
- Industry acceptance
 - Utilize industry standards
- Reliability/Availability requirements
 - Near term distributed authentication/authorization
- Third party access
 - Per connection inter-enterprise trust negotiation
- Poor end device security
 - Centralize security policy and generation of cryptographic material
- Decentralized operation
 - Provide short-term and resilient operation

Technical Achievements to Date

- Requirements document
- High-level design specification
- Hybrid authentication and authorization protocol paper published
 - Sixth International Conference on Information Assurance and Security

Collaboration/Technology Transfer

Plans to gain industry input

- Review of requirements and high-level design by industry advisors
- Solicit control system vendor feedback and participation
- Discussions with standards activities

Plans to transfer technology/knowledge to end user

- Journal, conference, and white papers to transfer ideas
- Utilize standards and best practice where possible
- Attempt to standardize protocols
- A single method to effectively manage all cryptographic keys

Next Steps

- Approach for the next year
 - Implement prototype system
 - Work with OASIS to create a KMIP profile for control system key management
- System design can lead to a prototype system as well as ancillary systems needed to solve other aspects of key management problems
 - Modified gateways to other communication medium
 - Intelligent proxies to accommodate architecture challenges